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PHENOMENOLOGY OF VERY HIGH MULTIPLICITY PRO-
DUCTION PROCESSES
J. Manjavidze*, A. Sissakian

A classification is proposed for possible asymptotic production cross
sections o, with respect to n which is independent of concrete models of
strong interactions and a physical meaning of the classification is explained
on the basis of the statistical physics picture.

The investigation has been performed at the Laboratory of Theoretical
Physics, JINR.
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1. Let us consider the multiple production of hadrons when their number
n is very large

n > n(s). (1)
Here n(s) is the mean multiplicity defining the natural scale of values n at
a given energy. Interest in this region (1) stems from the expectation to
get further information that would refine our knowledge of the quark-gluon
plasma physics.

Since there is no quantitative theory, it would be well to develop a gen-
eral picture of physical phenomena in the region (1) which is independent
of model notions formed by investigations in the region n ~ n. We shall
construct this phenomenological picture on the basis of the statistical me-
chanics by representing a final state of the process as a (microcanonical)
ensemble. For this purpose we introduce the density matrix p(3, ), such
that the production cross section of n particles is

1 dz 1 1 ag .
on(s) = '2-—7;;% prET T — ﬁ / %ﬂ Il(ﬂ\/-;)p, (2)

Re >0
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where I; is the Bessel function of an imaginary argument (for a detailed
derivation of formula (2) see, for instance, ref. [1}).

At large n integration in (2) can be performed by the saddle point
method. First, we should find the solutions of the state equations

0
Vs = %lnp(ﬁ,Z), (3)

d
n = za—zlnp(ﬁ,z). (4)

Under this definition of integrals in (2), 1/4 means the gas temperature
of particle production and z means activity (i.e., (1/8)Inz is the chemical
potential).

Now we take advantage of the fact that the asymptotics o,, with respect
ton (n € nypar = /5/m,) is defined by the leftmost singularity p(3, z) in
z (Re z > 0) and weakly depends on the nature of the singularity. On the
basis of the statistical mechanics we assume p(3, z) to be regular function
of z inside the circle |z| = 1 [2]. If 2, is the leftmost singularity, then from
general considerations one would expect one of the following possibilities to

be realized:
a) ze =1
b) Zp = OO (5)
¢) 1<z, < o0,

thus providing a classification of possible asymptotics we search for. Now
let us elucidate what physical conditions the quantity z. depends on.

2. First, it is to be noted that the singularity p(S, z) at finite z is treated
as an indication of a phase transition [2, 3]. For instance, let A be such that
particles are combined into clusters*. Then, the number of clusters of ¢
particles is ~ exp(—fo¢4~1/¢) where o¢3=1/4 is the cluster surface energy
(£2-1/4 is the cluster surface area) . Then

p(B, 2) ~ exp {\fj exp (-pott119) } (6)

=1

will be singular at z = 1 (d > 1). This singularity indicates a first order
phase transition (condensation).

In calculating the relevant o, we consider the following analog model.
Let us cover the volume, into which particles are produced, by the net and
let the presence of a particle in the node be denoted by (—1) and the absence
by (+1).

Now we take advantage of the fact that this model of lattice gas is well
described by the Ising model. Switching on a magnetic field H we can

* More precisely, the decay of clusters produces particles.
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control the number of down spins, i.e. the number of produced particles.
This means that activity z = exp(—28H) and H acts as a chemical potential.

Then the density matrix p in the continuous limit is determined by the
functional integral [4]

p5,5)= [ D, (M
where the action
1 2 2 4
S0 = [de [5007 —a +ant =], a0, ®
and
e~(1-3/8); A~H. 9)

Here 1/8. is the phase transition temperature. Assume that 8 > 8., i.e., the
average spin (1) # 0. To simplify the calculations we assume that 3/8, > 1
(this ensures small fluctuations in the vicinity of the chosen (u)).
Singularity in H arises due to the following reason. At H = 0 the
potential
v=—epl +oapt, €>0, (10)

has two minima at py = +./(¢/2a). Switching on H < 0 we destroy che

degeneracy. The left minimum at y = —/(¢/2a) appears to be lower than
the right one. Then, the system in the right minimum (it is described by
up spins, which means the absence of produced particles) turns out to be
unstable' a tunneling into a lower (stable) minimum is possible.

The above instability is associated with the branching point in the com-
plex plane H at H = 0 and the discontinuity provides [6]

Im p(B,2) ~ %exp{—%},’ (11)

whaere a; and a5 are independent of .
Using (11) we find that the solution (4) has the form

2 1/3
Z ~exp {M} , (12)

n

which corresponds to the following asymptotics:

n(B) x exp {—3(ﬂ2a2)1/3n2/3} , (13)

i.e., we see that the singularity at z = 1 is associated with the following
class of asymptotics: o, > O(e™").
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It is to be noted that p,(A) is determined by the contribution of only
Im p, and metastable states, whose decay is described by Re p, are insignif-
icant.

The contribution considered above describes the decay of an unstable
(with respect to particle production) state. This decay produces clusters
and if the size of a cluster is larger than a critical one, cluster’s size infinitely
increases with time. During this motion the cluster walls ”accelerate”; i.e.,
the larger the number of particles forming a cluster, the smaller energy is
needed to add one particle into a cluster {5, 6]. Just this phenomenon is
observed in the decrease of z with increasing n, see (12).

3. Let us continue the discussion of (7) at 8 < f.. In this case the
potential (10) has the only minimum at z = 0. By switching on the external
field there arises a mean held i = j2(H) that in the first approximation can
be found from

20e|pu + dap® = A (14)

At large H, which corresponds to asymptotics in n, eq.(14) has the solution
fi = (A/4a)l/3. (15)

Estimation of the integral (7) in the vicinity of this minimum provides

p(B.2) ~ exp {¥(In )3} 4 =(8) > 0. (16)

We see that in the case under consideration the singularity is at z = 2, = oc.
Equation (4) has the solution

%~ exp (§2>3 (17)

4y

that increases (in contrast with the one considered in sec. 2) with n. With
(17) one can easily find that

pn(B) ~exp (=7n*) | 7 =75(8) >0, (18)

i.e., decreases faster than e=".

4. We should like to emphasize that the above considered analog model
does not account for the nature of the singularity p(3, z) at finite z. There-
fore, we should clarify our arguments. However, it follows from general con-
siderations that the singularity p(3,z) at finite 2 testifies to a phenomenon
similar to the phase transition. This means that the particle production
should be considered as a result of the decay of ”clusters” . This process
can be described by refining formula (6) as follows: let the probability of the
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i-th ”cluster” (i = 1,2,...) of mass m; to decay into n; particles be W, (m;).
Then, neglecting the interaction between ” clusters” (see also ref. [7]) we have

00
p(B,z) = exp {m/ %0(771)e_ﬂmt(z, m) ), (19)
0
where o(m) is proportional to the average number of mass m clusters and
oo
t(z,m) = Zz"w,,(m), t(1,m) = 1. (20)
n=1

The ”Boltzmann” factor e=#™ in (19) arises due to the energy-momentum
conservation laws. Assuming in (19) (m — (1/8) Int) to be the total energy
of a "cluster” and replacing the integral by the sum, we can arrive at a
formula analogous to (6). The phase transition, described in sec.2, in terms
of formula (19) corresponds to the integral divergence in the upper limit at
z=1.

As an example, let us consider the case when #(z, m) is singular at z =
2¢y, 1 < z, < 00. For instance, let

t(z,m):(”“‘l)”, >0, (21)

Ze— 2

Taking into account that an average number of particles produced in the
decay of a ”cluster” of mass m

_ d
n(m) = a—zlnt(z,m) . (22)
we can express z. through #(m). For formula (21) we get that
v
ze(m) =1+ )’ (23)

It is to be noted that irrespective of the type of singularity only the
assumption about ¢(z,m) tending to infinity at z = z, defines by (22) the
position of a singularity on the right from unity. Moreover, with increasing
m the singularity moves to the left. Then, according to the momentum
energy conservation laws the production of a particle in the decay of one
”cluster” will dominate in the asymptotics in n. Indeed, the production of
particles in the decay of two ”clusters” ~ ¢2(z, s/4) and this contribution in
the 2 plane are associated with the singularity

v

n(s/4)

v

a(s)

zgz):l-r— >z£1):1+
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Assuming that correlations between particles produced in the decay of one
”cluster” differ from those between particles produced in the decay of various
”clusters”; the afore-said implies the presence of a ”phase transition” which
is reflected in the change of the nature of correlations with increasing n.
However, this transition is smooth without sharp changes. Therefore, it is
better called the "structure phase transition”.

Thus, after a structure phase transition

d
p(B,2) z/—rgv(m)e"gmt(z,m). (24)
Hence, one can easily see that
on(s) o e=¥"/10) (25)

i.e., corresponds to the KNO scaling.

Using the above mechanism of phase transition, one can easily find the
range of values of n, where the estimate (25) is valid. The correction to (25)
due to the production of two clusters is ~ exp(~v"/n(s/4)). Hence, if

7i(s)i(s/4)
A(s) - #(s/4)’ 20)

the estimate (25) is valid. Assuming that the differences n(s) —a(s/4) ~ 1
the structure phase transition begins at n ~ n?(s) (if the production of two
clusters has no additional smallness).

Using (21) one can find the ratio of dispersion D to 7 with regard to the
production of two clusters

1
n> -
v

DXs) . #(s/4) ,
TPy 1-4 TR (27)

where the positive constant A takes into account a relative weight of the
production of two clusters. We see that the ratic of dispersion to average
multiplicity must increase with energy.

5. Now we shall formulate the main results of the paper.

a) According to our classification the asymptotics

on > 0(e™™) (28)

i1s associated with the phase transition (see :lso [8])-
b) The asymptotics
a, = O(e™™) (2

of necessity has the form of the KNO scaling. A similar asymptotics is
predicted by the inverse binomial distribution in the QCD jet, in the cascade
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processes [9] and provides the best agreement with experiment [10]. A
structure phase transition at n ~ 7n2(s) is typical of the asymptotics (30),
which naturally accounts for the observed violation of the KNO scaling and
increase in (D/n) with energy [11].
¢) For the asypmtotics

o < O(e™™), (30)
which is typical of the multiperipheral modes, a slight violation (at least at
modern accelerator energies) of the KNO scaling appears to be a pure chance
since the scale-invariant structure is the privilege of phase transitions.

In conclusion, we should like lo emphasize that the asymptotics (28),
(29), (30) have roots in various physical phenomena and only the exper-
imental information in the region n 3> 7% (up to n ~ 72?) may elucidate
which of them is realized in practice.
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